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Abstract – The historical heritage requires particular 

systems to preserve its state of conservation. In this 

regard, the Structural Health Monitoring (SHM) 

systems they are fundamental in conjunction with 

suitable algorithms that allow the automatic detection 

of possible critical events that would ruin the state of 

conservation of the building. In this paper is proposed 

the use of a SHM system based on the analysis of the 

Acoustic emission in conjunction with an K-nearest-

neighbor (KNN) Artificial Intelligence (AI) Algorithm 

for the classification of the data. Fundamental, in the 

use of the Classification algorithms based on AI, is the 

use of suitable features. In this regard, these features 

are estimated by using the Gutenberg–Richter law, 

typically used in the analysis of the earthquake. This 

permits to correlate the characteristic of the magnitude 

acoustic emission due to an event in the building with 

the number of the events.  

Experimental test will be used for the training and the 

test of the proposed architectures.  

 I. INTRODUCTION 

The preservation of the historical heritage building is an 

important task that require innovative system to be 

performed. In this field, interesting advantages are 

provided by the use of Structural Health monitoring 

systems (SHM) [1]–[8]. Among the SHM systems 

particular interest is devoted to the systems that provides 

the information about the state of the building by using the 

Acoustic Emission (AE) signals analysis. In fact, a damage 

in historical building, for example generated by a 

compression or a stress of the building, generate a 

localized releasing of internal energy that can be felt as an 

AE in the following called crack and represented in Fig1. 

Due to their origin the cracks are diffusely used in the 

online SHM system to determine the damage evolution 

[4], [6], [16], [7], [9]–[15].  
The main problem in the analysis of AE in a SHM 

system is the signal loss. I fact, due to the non-

homogeneous characteristics of the material in which the 

propagation of the AE is performed the arrival time and the 

attenuation can be different respect that obtained in a 

homogeneous material. This can cause that the acquisition 

system of the SHM do not recognize the AE events 

obtaining a signal loss. To overcome this problem several 

solutions are proposed in literature. In particular, in [12], 

[17] the input signal are connected to the SHM system by 

a multi-triggered acquisition system [18]. 

An important topic, once the AE is acquired, is the 

analysis of the signal in order, to detect or identify a critical 

event which can affect the state of the historical structure. 

 

Fig. 1. AE in a concrete sample due to a stress 

representation.  
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The identification can be done by using thresholds 

empirically defined by the experience of the operator [19] 

or an automatic identification based on artificial 

intelligence algorithms. These algorithms are based on the 

pattern recognition of some features estimated on the signal 

[20]–[29]. With this aim in the paper is proposed the use of the 

Gutenberg–Richter law (GBR) [30] adaptation to evaluate 

the features that make up the pattern that will be recognized. In 

fact, in previous paper [17], [19] is demonstrated as the GBR 

law can be used to determine the damage in concrete 

structure by using the AE signals information and in 

particular critical damages.  

The same features are used to train the Machine 

Learning algorithm so is not necessary a threshold defined 

by the experiences of the operator. 

Among the Machine learning algorithm the k Nearest 

Neighbour Classifier [31] is chosen for the classification 

of the AE feature because it is particularly suitable for 

online classification applications. 

The paper is organized as follows: in Section II, the GBR 

law modification is analyzed; in Section III, the k Nearest 

Neighbour Classifier is summarized; in Sections IV, the 

experimental results are presented; finally, the conclusions 

are drawn. 

 

 II. ADAPTATION OF THE GUTENBERG–RICHTER 

LAW 

In order to empirically identify some relationship 

between variable parameters referring to the geographical 

area where the earthquake occurs and the earthquake itself 

the GBR law play a main role [32]. This law is based on 

the analysis of magnitude-frequency relationship and uses 

all magnitude values of earthquakes in a region and not just 

the highest ones. The analytical expression of this law is: 

  (1) 

where N is the number of the events, M is the magnitude 

of the events, and “a” and “b”, so called b-value, are two 

empirical constants. The constant "a" depends on the 

seismicity rate, and varies significantly from area to area. 

Instead the earthquakes number determines the constant 

“b”. The “maximum-likelihood estimation” (ML) 

methodology, was used in order to identify the b-value: 

  (2) 

where Mav is the average of the observed magnitudes, and 

Mmin is the minimum or the considered threshold 

magnitude. 

The fracture process in concrete generates Acoustic 

emissions (AE). These last are elastic waves, and permits 

to analyze the fracture process by their amplitude 

distribution. Among various parameters, the most 

important one is the b-value obtained from the amplitude 

distribution data of AEs according to the Gutenberg-

Richter law [19]. The AEs recorded during the test are 

oscillating damped waves very similar to the waves that 

are generated during earthquakes. These waves are 

characterized by a decreasing amplitude up to the noise 

threshold. Starting from these considerations, it is possible 

to transform the formulation enunciated by Gutenberg-

Richter adapting it to AE as following: 

  (3) 

where N is the number of the hits over the noise threshold 

of a singular AE analyzed during the process, Adm is the 

maximum amplitude of AE signal, and “a” and “b” are two 

constants. Constant “a” can be obtained for each test 

carried out, by considering that in the earthquake the 

maximum magnitude generates a b-value tending to 1. In 

our analysis, the critical events recognized on an AE have 

to generate a b-value equal to 1. Therefore, for the critical 

events the a-value can be obtained by the (3) as: 

  (4) 

Then the feature used in the proposed classifier are a-

value and Adm. 

 

 III. K-NEAREST NEIGHBOUR ALGORITHM  

The K-Nearest Neighbour  (kNN) belong to the supervised 

learning algorithm among the machine learning techniques.   

In the KNN the classification of the input data is based on the 

closest training example in the feature space [31]. In Fig. 2 is 

represented a typical classification problem solved by KNN. 

The algorithm determines the distance L in the feature space of 

unknown object from the other object previously classified in 

the training phase. Usually, among the distance definition, the 

Euclidean one is used: 

  (5) 

where N is the number of features, Pi is the i-th feature of the 

object to be classified, and Ti is the i-th feature of one of the 

object pre-classified used in the preliminary training of the 

algorithm. 

In the example there are objects belonging to two class. If k 

is equal to 5 the 5 nearest objects are taken into consideration, 

determining the classification area shown in the figure with the 

solid line. At this point the algorithm consider the neighbor 

object class as a vote for the classification of the unknown 

object. Then the object is classified on the basis of the majority 

vote of its 5 nearest neighbors. If k is 11 then the dashed line 

area is considered. Typically, is considered k equal to 1 for 

which the classification is made to the nearest neighbor. 



 

 

 

 

 IV. EXPERIMENTAL RESULTS 

For the experimental results an acquisition system 

composed by a AE sensor, DAQ board and multi-triggered 

generator system [11, 22] is considered. The AE sensors 

used in the experiment are the R15α characterized by a 

resonant frequency 150 kHz and peak sensitivity 

69V/(m/s). the sensors are connected to the input channel 

of the acquisition system. The acquisition system used is 

the National Instrument NI6110 DAQ board with four 

channels, a sampling frequency equal to 5 MHz and an 

amplitude resolution of 12-bit. The multi-triggered 

generator system is connected to the sensors to generate 

the trigger signal to start the acquisition of an acoustic 

event. In order to the test the method in controlled 

conditions a sample with known characteristic is 

considered. In particular, a concrete cube is used as 

samples. Instead the material is obtained accorded to 

EN12390-3 [33].  

In order to fix the sensors to the sample a silicone 

adhesive bonding agent was used. The sensors are fixed on 

the center of the longitudinal face of the sample (Fig.3) [1, 

33]. 

In the experimental setup is necessary to stress the 

samples in order to generate an AE. With this aims the 

samples are placed in a hydraulic press. This press stresses 

the samples with a controlled uniaxial compression, 

permitting to obtain load-displacement and the load-time 

diagrams. Both the controlled hydraulic press and the 

acquisition system are connected and managed by a PC 

with a proper software developed in Matlab environment. 

Following the standard EN 12390-3 [33] it is considered 

that for a stress lower than 40% of its maximum resistance 

of compression, the macroscopic behavior of the specimen 

is linear and elastic, and there are no important cracks 

because they are not inside the specimen. In the case under 

consideration this value is equal to 10 MPa. Instead, for 

stress in the range [40, 85] % of maximum resistance of 

compression, the macroscopic behavior of the specimen is 

not linear and the micro-cracks develop with the increasing 

of the stress. By considering this, the AE signals detected 

during the first 600 s, corresponding to the compression of 

1 mm of specimen, are discarded. 

 A. Analysis of the samples 

Preliminary data are acquired and used to train the KNN. 

With this aim the AE acquired are classified as and the 

classification of the critical/non-critical events are 

provided by the information arising from the hydraulic 

press and the analysis of the operator. The features 

memorized for the training and the comparison with the 

non-classified samples are the a-value and Adm, evaluated 

an all the four channels of the acquisition system. 

In the training 2500 AE events are considered 50% of 

them are critical events and the other 50 % are non-critical 

events. The KNN classifier is preliminary trained with this 

supervised learning data and then used with blind 

 

Fig. 2. KNN algorithm Classification representation 

respect two features (A,B). Round object is the object to 

be classified, the square objects represent the object of 

class  , the star objects represent the objects of class .  
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Fig. 3. Experimental setup  



 

 

acquisition of different sample. In particular, other 3000 

AE events are considered. Also in this case the 50 % 

represent non critical events and the other 50 % critical 

events, respectively.  

 

 
 The confusion matrix representing the results are shown 

in Fig.4. The analysis of the confusion matrix highlights as 

the classifier have a misclassification equal to 2 % for 

critical events, and lower then 0.1 % for the non-critical 

events.  

 

 V. CONCLUSION 

In the paper, in order to monitor historical heritage 

building or structure a Structural monitoring system that 

automatically detect critical events is proposed. The 

monitoring system acquire and analyze the acoustic 

emission generated in the structure by the stress to which 

the buildings are subjected. the analysis of the acoustic 

emission is performed by using the modification of the 

Guttemberg-Richter law. Instead, the automatic detection 

of the critical events is performed by using a machine 

learning technique. The machine learning technique used 

is k Nearest Neighbor Classifier (KNN) because it 

provides faster classification results and then it is suitable 

for the online monitoring of the historical heritage. The 

proposed architecture is experimentally tested on concrete 

cube samples. The results show that the KNN has good 

classification accuracy and low misclassification.  
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